
PROSEMINAR H4CK3RS D3L1GHT 2015 1

Slicing Algorithms for 3D-Printing
Fabian Schurig, Student, B.Sc. Computer Science

Technische Universität München
E-mail: f.schurig@tum.de

Abstract—3D printing is an upcoming trend based on a 3D modeled object which needs to be sliced and converted into
instructions for the extruder. This is being done by using different algorithms in staircases.

Keywords—3D Printing, Algorithms, Slicing

F

1 INTRODUCTION

3D Printing became increasingly popular
during the past few years. By now, 3D

Printers are available in all colors and shapes.
They are used for a huge field of applica-
tion. The process of 3D printing started off
with Stereolithography (SL), in which Liquid
Resin got solidified with a laser beam. To name
a few others of the most popular processes,
there are printing with digital light process-
ing (DLP), Laser Sintering, Selective Deposi-
tion Lamination (SDL) and Fused Deposition
Modeling (FDM) (3D Printing Industry, 2012 -
2015). This paper is focusing on FDM because
it is very office- and user-friendly and the
cleanest way to print an object. Another benefit
of FDM is the use of eco-friendly and me-
chanically stable, printable material (Stratasys
Ltd. 2014). Currently, there is a variety of dif-
ferent materials such as Polylactic acid (PLA),
Acrylnitril-Butadien-Styrol (ABS) for standard
use and specials like flexible Nylon, XT-CF20
(Carbon), CopperFill or foods (ColorFabb 2015;
Wiggers 2015) which are possible to be printed.
Nowadays the whole process of printing is
steadily being improved and therefore made
easier for customers. Meanwhile big databases
like Thingiverse which store 3D printing mod-
els have been newly-established. Shared printer
platforms such as 3D Hubs are another possible
way for people without a 3D printer to print
their models.

Main features of the process are generating
a digital model from a physical model and

converting it into an STL file format. By the use
of slicing algorithms it is possible to generate
a G-code file in order to set up the properties
of the printer. This machine language can be
interpreted by the printer.

1.1 Computer Aided Design (CAD)
Before slicing it is important to consider the
way a digital model is extracted as an STL file.
There are many different possibilities to model
objects, such as 3D scanning, taking measure-
ments for a full-scale replica or building it
from scratch. Furthermore by taking a video
or a series of pictures all around an object it
is feasible to feed those into a program like
Autodesk Memento and create a 3D model.
The easiest way is to download existing models
from online platforms as mentioned above, i.e.
GrabCAD or similar ones. As a consequence
that all of these methods are making use of
a computer, which leads to the fact that this
entire process is called Computer Aided Design
(CAD) (Narayan 2008).

1.2 STL format
STL means STereoLithography and can be ex-
ported into most CAD software suites, like Au-
todesk Fusion 360. For this reason it has become
the acronym ”Standard Tessellation Language”
(Grimm 2004). The STL format only utilizes
the three-dimensional description of the sur-
face geometry without generating non relevant
information for printing like texture or color,
leading to the popularity within the community



PROSEMINAR H4CK3RS D3L1GHT 2015 2

(Chua, Leong and Lim 2003). Each triangle, which
represents the surface, is characterized by three
vertices and the related unit normal (fabbers
1999). Due to the fact that a prototypical 3D
model is closed, also called waterproofed, each
vertex is part of three or even more triangles.
These redundant vertices are memory expen-
sive even when they are stored in ASCII repre-
sentation. Such being the case, a more compact
and common file can be produced with the
equivalent binary representation (Burns 1993).

1.3 G-code
Most 3D printers have three axes, an extruder,
a hot end and a heated bed. Therefore it has
four motors and two heated elements to con-
trol. With an STL file the printer is not yet
able to control the requested moves. Hence, a
G-code is introduced to transfer the favored
movements to the tools of the printer. The G
programming language provides every infor-
mation the printer needs to know to print the
desired object, including the speed and path of
moving the axes. In addition it has to supply in-
formation about the temperature of the heated
elements and speed of extruding the filament.

The process of slicing on the basis of a rim
is demonstrated in the following.

2 SLICING ALGORITHMS

Fig. 1. A rim is cut by a green intersection-plane.

By name, the base algorithm is all about
cutting triangles with planes. In FDM, the STL
file gives out the required triangles in order to
apply the melted filament layer by layer onto
the printing area. For that reason there is a
plethora of cutting planes through the object
parallel to the ground plane with varying z
values (height). The intersection of such a plane

with the object is the resulting layer to print.
Plenty of layers printed from the bottom to the
top conclude in the item.

Fig. 2. A triangle cut by an intersection plane
(green) with its position vectors i and j

Each intersection plane is spanned by the
vectors u and v and cuts various triangles.
Supplementary the height h of a plane from the
bottom and the normal vector n is known. With
the help of the given vertices of the triangles
it is possible to calculate each distance from
the vertices to the cutting plane. The edge
vector e can be defined with respectively two
of the three position vectors. Implementing the
hessian normal form and basic vector opera-
tions, it is possible to calculate the intersections
for every edge based on the previous position
vectors and filed distances to the plane with the
Intercept theorem.

Fig. 3. Generating an edge vector e and a new
position vector p on the slice.

By doing so for all three edges of a triangle
the result will look like the following. Firstly
there could be a line defined by two new
position vectors p and q, or the plane is cutting



PROSEMINAR H4CK3RS D3L1GHT 2015 3

the triangle exactly in one vertex. Finally there
is the possibility that the plane does not cut the
triangle at all. There are also some special cases
that the edge can slice the plane i.e. it is parallel
to the normal vector n. Such can be calculated
much faster. Thus, each intersection for every
triangle of the object with all planes has to be
reckoned. This can be done with the following
slicing algorithms.

Fig. 4. The sliced rim from the green intersec-
tion layer above.

Algorithm 1 Trivial Algorithm
1: for each plane p in cutting planes do
2: init slice of p
3: for each triangle t in triangle mesh do
4: if t intersects p then
5: calculate intersection points
6: end if
7: if intersection points == 2 then
8: add new line to slice of p
9: end if

10: end for
11: end for

2.1 Trivial Slicing
A trivial method is traversing through all trian-
gles in the given triangle mesh and calculating
the intersections for every plane. The slice of
every layer has to be filed. Checking and cal-
culating intersection points for every triangle
even if those are not subtended by the cutting-
plane is a very slow method especially for files

with lashings of triangles. Some more efficient
algorithms are described in the following.

2.2 Sweep Plane Slicing

A different way of slicing has been introduced
by McMains and Sequin (McMains and Sequin
1999). Before operating their algorithm a circu-
lar linked list with pointers to the edges is kept
within a standard status structure. With this
it is possible to store topological data. ”Edge
uses” describes a structure which represents
triangle boundaries. In this algorithm it is just
a ”virtual” plane sweeping from bottom to
top. An event is triggered each time the plane
reaches a vertex or a z-coordinate of a slice.
The event could be a rearrangement of the
status data structure if a vertex is reached or
a snapshot of all cut edges. (Gregori, Volpato,
Minetto and da Silva 2014)

2.3 Triangle Grouping

Another algorithm is based on grouping trian-
gles by z-coordinates. (Tata, Fadel, Bagchi and
Aziz 1998) In this method triangles are grouped
by their minimum zmin and maximum zmax
values. Triangles with the same zmin value can
be clustered together in buckets. Each bucket
can have sub-buckets grouped by zmax values
of the triangles. In result one gets a bucket
for each zmin value and this bucket contains
sub-buckets with different zmax values. Before
processing the triangles another problem arises
which is sorting them in optimal time. For this
reason all triangles can be filed in a binary
search tree or with bucket sort. The triangles
are processed by a key characteristic identifier.
The real implementation details are not shared.
By using a structure like a binary search tree
and knowing the z-coordinates from each in-
tersection plane it is possible to get the result
of the triangles which have been cut from a
plane even faster. To calculate the slices it is
feasible to use the same method as mentioned
above in the trivial algorithm. Due to the fact
that the triangles have to be sorted just once it
is slower but also has the advantage of a faster
contour assembly and slicing the item faster a
second time with another different distance of



PROSEMINAR H4CK3RS D3L1GHT 2015 4

z-coordinates. (Gregori, Volpato, Minetto and da
Silva, 2014)

2.4 Incremental Slicing
Incremental slicing is an asymptotically optimal
algorithm in which each triangle is represented
by an interval from its zmin to zmax values.
Instead of having a triangle mesh one uses an
interval mesh in this case. The intervals can
also be stored in an interval tree (Berg, Cheong,
Kreveld and Overmars 2008). The z-coordinates
of each plane from bottom to top are filed
in an array. The triangle intersections can be
solved with the stabbing problem by using the
intervals as input. (Edelsbrunner 1980) When
performing a cut it is possible to get an exact
interval of all cut triangles. (Gregori, Volpato,
Minetto and da Silva 2014)

3 INFILLS

Unfortunately only the outline of the object
is available and needs to be filled for stabil-
ity reasons. This can be done with the Vattis
clipping algorithm and the polygon offsetting.
For a fast solution to this problem Clipper
and Boost.Geometry are the commonly used
libraries. There are also many different kinds
of infills. Each one has its advantages and
disadvantages based on stability, flexibility and
efficiency just to name a small list. Commonly
used infills are Honeycomb for items which need
to be stable and Rectlinear for a faster print
without losing a lot of stability. Another fact
is that typically each infill is rotated 90 degrees
per layer to gain more solidity. For the very
bottom and top layers a three layer solid infill
is recommended just as three perimeters for the
outline.

4 SUPPORT MATERIAL

Overhangs such as in bridges are another diffi-
culty which have to be considered when print-
ing with FDM. The support material generation
depends on the printer and layer resolution.
The algorithm superimposes the layers in or-
der to detect the top view outline and hidden
edges of the object. If there is a layer exceeding
the previous layer the algorithm constructs a

projection of the new outline underneath and
generates a defined support structure.

After the contour of each layer has been
computed, the G-code can be generated.

5 CONCLUSION
With todays possibility of 3D printing many
useful things like hand prostheses can be cre-
ated and prototyped faster with cheaper pro-
duction processes. For this process many stair-
cases must be overcome. Starting with genera-
tion of a computer from a physical model, get-
ting over to a STL file which can be processed
by algorithms to get a G-code for the printers’
instructions.

Free widespread open source slicing pro-
gramms are Slic3r and Cura which are running
with modified algorithms described above.
Such algorithms can be trivial and slow or more
efficient but complex. Because of the diversity
of settings in such programs and their depen-
dend printing results, staircases are difficult
to be skipped. A simple documentated Java
implementation for a trivial slicing algorithm
with use of the hessian normal form is in the
appendix of this paper.

In future there will be printers with a
webfrontend and preconfigured slicing set-
tings. These printers will be similar utilized
as paper printers but instead of uploading a
Document-File (PDF) they need a STL file. Also
thinkable are printers with integrated laser
scanners to copy 3D objects.

REFERENCES
[1] H. Edelsbrunner, Dynamic Data Structures for orthogonal

intersection queries. [Mit Fig.] , Inst. f. Informationsverar-
beitung, TU Graz, 1980

[2] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars,
Computational Geometry: Algorithms and Applications, 3rd
ed. Santa Clara, CA, USA: Springer-Verlag TELOS, 2008.

[3] K. Tata, G. Fadel, A. Bagchi, and N. Aziz, Efficient slicing
for layered manufacturing, Rapid Prototyping Journal ,vol.
4, no. 4, pp. 151167, 1998

[4] S. McMains and C. Sequin, A coherent sweep plane slicer
for layered manufacturing, in Proceedings of the fifth ACM
symposium on Solid modeling and applications - SMA 99.
New York, New York, USA: ACM Press, 1999, pp. 285295.

[5] Rodrigo Gregori, Neri Volpato, Rodrigo Minetto and
Murilo da Silva (2014). Slicing Triangle Meshes: An
Asymptotically Optimal Algorithm. p. 2 Available from:
http://www.dainf.ct.utfpr.edu.br/ murilo/public/slicing.pdf
[Accessed 2015]



PROSEMINAR H4CK3RS D3L1GHT 2015 5

[6] Stratasys Ltd., 2014. FDM Technology. , About Fused Depo-
sition Modeling. Available from: http://www.stratasys.com/3d-
printers/technologies/fdm-technology [Accessed 2015].

[7] 3D Printing Industry, 2012 - 2015. 3D Printing Processes:
Free Beginner’s Guide 3D Printing Industry. 3D Printing
Industry. Available from: http://3dprintingindustry.com/3d-
printing-basics-free-beginners-guide/processes/ [Accessed
2015].

[8] Narayan, K. Lalit (2008). Computer Aided Design and Man-
ufacturing. New Delhi: Prentice Hall of India. p. 3. ISBN
812033342X.

[9] Gonen, R., 2013. Stereolithography (3D Printing) Algorithms
and Thoughts. Raveh Gonens Blog. Available from:
https://ravehgonen.wordpress.com/2013/02/19/stereolithography-
3d-printing-algorithms-and-thoughts/ [Accessed 2015].

[10] ColorFabb, 2015. SPECIALS FILAMENTS. Available from:
http://colorfabb.com/specials [Accessed 2015].

[11] Wiggers, K., 2015. Why 3D food printing is more than just
a novelty; it’s the future of food. Digital Trends. Available
from: http://www.digitaltrends.com/cool-tech/3d-food-printers-
how-they-could-change-what-you-eat/ [Accessed 2015].

[12] Chua, C. K; Leong, K. F.; Lim, C. S. (2003), Rapid Proto-
typing: Principles and Applications (2nd ed.), World Scientific
Publishing Co, ISBN 981-238-117-1 Chapter 6, Rapid Proto-
typing Formats. Page 237, ”The STL (STeroLithography) file,
as the de facto standard, has been used in many, if not all,
rapid prototyping systems.” Section 6.2 STL File Problems.
Section 6.4 STL File Repair.

[13] fabbers, 1999. The StL Format. Available from:
http://www.fabbers.com/tech/stl format [Accessed 2015].

[14] Grimm, Todd (2004), User’s Guide to Rapid Prototyping,
Society of Manufacturing Engineers, p. 55, ISBN 0-87263-
697-6. Many names are used for the format: for example,
”standard triangle language”, ”stereolithography language”,
and ”stereolithography tesselation language”. Page 55 states,
”Chuck Hull, the inventor of stereolithography and 3D Sys-
tems’ founder, reports that the file extension is for stereolithog-
raphy.”

[15] Burns, Marshall (1993). Automated Fabrication. Prentice
Hall. ISBN 978-0-13-119462-5.

[16] Daniel Norée (2013) OpenRC Truggy - 3D Model. Avail-
able from: http://www.thingiverse.com/thing:42198 [Accessed
2015].

[17] Fabian Schurig (2015) Designs of 3D models
and parts for the OpenRC Truggy. Available from:
http://www.thingiverse.com/Bitfrost/designs [Accessed
2015].



PROSEMINAR H4CK3RS D3L1GHT 2015 6

APPENDIX

Listing 1. Main.java
1 package slicer;
2
3 import java.awt.Graphics2D;
4 import java.awt.image.BufferedImage;
5 import java.io.File;
6 import java.io.IOException;
7 import java.util.ArrayList;
8
9 import javax.imageio.ImageIO;

10
11 public class Main {
12
13 public static void main(String[] args) {
14 // Import Ascii stl file, src= http://www.thingiverse.com/thing:39751
15 ImportSTL stl = new ImportSTL(”OpenRC Truggy Rim.stl”);
16 try {
17 stl.readFile();
18 } catch (IOException e) {
19 e.printStackTrace();
20 }
21
22 Plane p = new Plane(new Vector(0, 0, 1)); // z axis
23 float objHeigth = 50; // in mm
24 int counter = 0;
25
26 // Trivial Algorithm
27 for (float cutter = 0; cutter < objHeigth; cutter += 0.2f) {
28 counter++;
29 p.setDistance(cutter);
30
31 ArrayList<Vector> intersectPoints = new ArrayList<Vector>();
32
33 // Position Vector of the plane
34 Vector e = p.normal.mul(p.height);
35
36 // Draw new Image
37 BufferedImage img = new BufferedImage(1000, 1000,
38 BufferedImage.TYPE INT RGB);
39 Graphics2D g2d = img.createGraphics();
40
41 for (int i = 0; i < stl.triangleMesh.size(); i++) {
42
43 ArrayList<Vector> ints = stl.triangleMesh.get(i)
44 .intersectPlane(p);
45
46 float[] x = new float[ints.size()];
47 float[] y = new float[ints.size()];
48
49 for (int j = 0; j < ints.size(); j++) {
50 // calc position vector of poins in plane via hessian
51 Vector s = e.sub(ints.get(j));
52 x[j] = p.getV().scalarProduct(s);
53 y[j] = p.getU().scalarProduct(s);
54 }
55
56 // draw resulting line in image
57 if (x.length > 1) {
58 g2d.drawLine((int) (x[0] ∗ 10 + img.getWidth() / 2),
59 (int) (y[0] ∗ 10 + img.getHeight() / 2),
60 (int) (x[1] ∗ 10 + img.getWidth() / 2),
61 (int) (y[1] ∗ 10 + img.getHeight() / 2));
62 }



PROSEMINAR H4CK3RS D3L1GHT 2015 7

63 intersectPoints.addAll(ints);
64 }
65 System.out.println(”#Intersects = ” + intersectPoints.size());
66 g2d.dispose();
67 // write output image in file
68 try {
69 ImageIO.write(img, ”png”,
70 new File(”render/” + counter + ”.png”));
71 } catch (IOException ex) {
72 ex.printStackTrace();
73 }
74 }
75 }
76 }

Listing 2. ImportSTL.java
1 package slicer;
2
3 import java.io.FileReader;
4 import java.io.IOException;
5 import java.util.ArrayList;
6 import java.util.Scanner;
7
8 public class ImportSTL {
9 public ArrayList<Triangle> triangleMesh;

10 public String fileName;
11 public String solid;
12 private Scanner sc;
13 private Triangle tri;
14
15 public ImportSTL(String fileName) {
16 super();
17 this.fileName = fileName;
18 triangleMesh = new ArrayList<Triangle>();
19 }
20
21 /∗∗
22 ∗ Reads an ASCII STL File
23 ∗ @throws IOException
24 ∗/
25 public void readFile() throws IOException {
26 sc = new Scanner(new FileReader(fileName));
27 tri = null;
28 Vector normal = null;
29
30 while (sc.hasNext()) {
31 String next = sc.next();
32 // System.out.println(next);
33 if (next.equals(”solid”) && sc.hasNext()) {
34 solid = next;
35 }
36 if (next.equals(”facet”)) {
37 tri = null;
38 }
39 if (next.equals(”normal”)) {
40 float x = readNumber(sc.next());
41 float y = readNumber(sc.next());
42 float z = readNumber(sc.next());
43 normal = new Vector(x, y, z);
44 // System.out.println(normal.toString());
45 }
46 if (next.equals(”vertex”)) {
47 float x = readNumber(sc.next());
48 float y = readNumber(sc.next());
49 float z = readNumber(sc.next());



PROSEMINAR H4CK3RS D3L1GHT 2015 8

50 Vector vectorX = new Vector(x, y, z);
51 // System.out.println(vectorX.toString());
52 sc.next();
53 x = readNumber(sc.next());
54 y = readNumber(sc.next());
55 z = readNumber(sc.next());
56 Vector vectorY = new Vector(x, y, z);
57 // System.out.println(vectorY.toString());
58 sc.next();
59 x = readNumber(sc.next());
60 y = readNumber(sc.next());
61 z = readNumber(sc.next());
62 Vector vectorZ = new Vector(x, y, z);
63 // System.out.println(vectorZ.toString());
64 triangleMesh
65 .add(new Triangle(vectorX, vectorY, vectorZ, normal));
66 // System.out.println(triangleMesh.toString());
67 }
68 if (next.equals(”endfacet”)) {
69
70 }
71
72 }
73
74 System.out.println(triangleMesh.toString());
75
76 }
77
78 /∗∗
79 ∗ reads the values of a string
80 ∗ @param s string to get valueOf
81 ∗ @return
82 ∗/
83 public float readNumber(String s) {
84 return (float) (Double.valueOf(s)).doubleValue();
85 }
86
87 }

Listing 3. Line.java
1 package slicer;
2
3 public class Line {
4 public Vector[] vec = new Vector[2];
5
6 /∗∗
7 ∗ Intersection Line of Triangle with a Plane
8 ∗/
9 public Line(Vector start, Vector end) {

10 super();
11 this.vec[0] = start;
12 this.vec[1] = end;
13 }
14
15 }

Listing 4. Plane.java
1 package slicer;
2
3 public class Plane {
4 public float height; // height to origin
5 public Vector normal;
6
7 /∗∗



PROSEMINAR H4CK3RS D3L1GHT 2015 9

8 ∗ Represents a Cutting Plane
9 ∗ @param normal Normal of the plane. Most times in z direction.

10 ∗/
11 public Plane(Vector normal) {
12 super();
13 this.height = 0;
14 this.normal = normal;
15 }
16
17 /∗∗
18 ∗ returns a support vector u of the plane
19 ∗ @return
20 ∗/
21 public Vector getU() {
22 Vector u = new Vector(−normal.y, normal.x, 0);
23 if (u.isNull()) {
24 u = new Vector(−normal.z, 0, normal.x);
25 }
26 return u;
27 }
28
29 /∗∗
30 ∗ returns a support vector v of the plane
31 ∗ @return
32 ∗/
33 public Vector getV() {
34 Vector v = new Vector(0, −normal.z, normal.y);
35 if (v.isNull()) {
36 v = new Vector(−normal.z, 0, normal.x);
37 }
38 return v;
39 }
40
41 public float getDistance() {
42 return height;
43 }
44
45 public void setDistance(float distance) {
46 this.height = distance;
47 }
48
49 public Vector getNormal() {
50 return normal;
51 }
52
53 public void setNormal(Vector normal) {
54 this.normal = normal;
55 }
56
57 /∗∗
58 ∗ returns the distance of a vertex to the plane
59 ∗ @param vertex
60 ∗ @return distance
61 ∗/
62 public float distanceToPoint(Vector vertex) {
63 return vertex.scalarProduct(normal) − height;
64 }
65
66 }

Listing 5. Triangle.java
1 package slicer;
2
3 import java.util.ArrayList;
4 import java.util.Arrays;



PROSEMINAR H4CK3RS D3L1GHT 2015 10

5
6 public class Triangle {
7 public Vector[] corner = new Vector[3];
8 public Vector normal;
9

10 /∗∗
11 ∗ Represents a triangle.
12 ∗ @param one first edge
13 ∗ @param two second edge
14 ∗ @param three third edge
15 ∗ @param normal normal of the triangle
16 ∗/
17 public Triangle(Vector one, Vector two, Vector three, Vector normal) {
18 super();
19 this.corner[0] = one;
20 this.corner[1] = two;
21 this.corner[2] = three;
22 this.normal = normal;
23 }
24
25 /∗∗
26 ∗ Subtracts a vector s from the triangles corners.
27 ∗ @param s vector which will be subtracted
28 ∗ @return new Triangle
29 ∗/
30 public Triangle sub(Vector s) {
31 corner[0] = corner[0].sub(s);
32 corner[1] = corner[1].sub(s);
33 corner[2] = corner[2].sub(s);
34 return this;
35 }
36
37 public boolean checkVector(Vector v) {
38 if (v.z >= 0 && v.z <= 1) {
39 return true;
40 }
41 return false;
42
43 }
44
45 /∗∗
46 ∗ Returns a new position vector of the cutting point with the plane.
47 ∗ @param p slicing plane
48 ∗ @param i corner of a triangle
49 ∗ @param j corner of a triangle
50 ∗ @return position vector of the cutting point on the plane
51 ∗/
52 public Vector combination(Plane p, int i, int j) {
53
54 float distanceI = p.distanceToPoint(corner[i]);
55 float distanceJ = p.distanceToPoint(corner[j]);
56
57 if (distanceI ∗ distanceJ < 0) {
58 float factor = distanceI / (distanceI − distanceJ);
59 //System.out.println(factor);
60 Vector edge = Vector.sub(corner[j], corner[i]);
61 return corner[i].add(edge.mul(factor));
62 } else if (distanceI == 0) {
63 return corner[i];
64 } else if (distanceJ == 0) {
65 return corner[j];
66 }
67 return null;
68 }
69



PROSEMINAR H4CK3RS D3L1GHT 2015 11

70 /∗∗
71 ∗ Cuts a triangle with a plane.
72 ∗ @param p slicing plane
73 ∗ @return intersection points with plane
74 ∗/
75 public ArrayList<Vector> intersectPlane(Plane p) {
76
77 ArrayList<Vector> result = new ArrayList<Vector>();
78
79 Vector[] tmp = new Vector[3];
80
81 tmp[0] = combination(p, 0, 1);
82 tmp[1] = combination(p, 0, 2);
83 tmp[2] = combination(p, 1, 2);
84
85 for (int i = 0; i < 3; i++) {
86 if (tmp[i] != null) {
87 result.add(tmp[i]);
88 }
89 }
90 return result;
91 }
92
93 @Override
94 public String toString() {
95 return ”Triangle [corner=” + Arrays.toString(corner) + ”, normal=”
96 + normal + ”]”;
97 }
98
99 }

Listing 6. Vector.java
1 package slicer;
2
3 public class Vector {
4 public float x, y, z;
5
6 /∗∗
7 ∗ Represents a 3 dimensional Vector.
8 ∗ @param x coordinate
9 ∗ @param y coordinate

10 ∗ @param z coordinate
11 ∗/
12 public Vector(float x, float y, float z) {
13 super();
14 this.x = x;
15 this.y = y;
16 this.z = z;
17 }
18
19 /∗∗
20 ∗ Calculates the scalar with a vector p
21 ∗ @param p
22 ∗ @return scalarProduct
23 ∗/
24 public float scalarProduct(Vector p) {
25 return this.x ∗ p.x + this.y ∗ p.y + this.z ∗ p.z;
26 }
27
28 /∗∗
29 ∗ length of a vector
30 ∗ @return
31 ∗/
32 public float length() {
33 return (float) Math.sqrt(x ∗ x + y ∗ y + z ∗ z);



PROSEMINAR H4CK3RS D3L1GHT 2015 12

34 }
35
36 /∗∗
37 ∗ checks if it is a null vector
38 ∗ @return
39 ∗/
40 public boolean isNull() {
41 if (this.x == 0 && this.y == 0 && this.z == 0) {
42 return true;
43 }
44 return false;
45 }
46
47 /∗∗
48 ∗ vector multiplication with a factor
49 ∗ @param factor
50 ∗ @return
51 ∗/
52 public Vector mul(float factor) {
53 return new Vector(this.x ∗ factor, this.y ∗ factor, this.z ∗ factor);
54 }
55
56 /∗∗
57 ∗ vector division with a divisor
58 ∗ @param divisor
59 ∗ @return
60 ∗/
61 public Vector div(float divisor) {
62 return new Vector(this.x / divisor, this.y / divisor, this.z / divisor);
63 }
64
65 /∗∗
66 ∗ vector addition with another vector
67 ∗ @param v
68 ∗ @return
69 ∗/
70 public Vector add(Vector v) {
71 return new Vector(this.x + v.x, this.y + v.y, this.z + v.z);
72 }
73
74 /∗∗
75 ∗ vector subtraction with another vector
76 ∗ @param v
77 ∗ @return
78 ∗/
79 public Vector sub(Vector v) {
80 return new Vector(this.x − v.x, this.y − v.y, this.z − v.z);
81 }
82
83 /∗∗
84 ∗ static vector addition of two vectors a and b
85 ∗ @param a vector
86 ∗ @param b vector
87 ∗ @return new vector
88 ∗/
89 public static Vector add(Vector a, Vector b) {
90 return new Vector(a.x + b.x, a.y + b.y, a.z + b.z);
91 }
92
93 /∗∗
94 ∗ static vector subtraction of two vectors a and b
95 ∗ @param a vector
96 ∗ @param b vector
97 ∗ @return
98 ∗/



PROSEMINAR H4CK3RS D3L1GHT 2015 13

99 public static Vector sub(Vector a, Vector b) {
100 return new Vector(a.x − b.x, a.y − b.y, a.z − b.z);
101 }
102
103 @Override
104 public String toString() {
105 return ”Vector [x=” + x + ”, y=” + y + ”, z=” + z + ”]”;
106 }
107
108 }


